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Foreword 

Since publication of the Atlas of cetacean distribution in north-west European waters 

(Reid et al. 2003), many new data relating to cetacean distribution have been collected.  

The European Seabirds at Sea and Sea Watch databases have been augmented by data 

from opportunistic, generic surveys as well as systematic, geographically targeted ones.  

The SCANS (Small Cetacean Abundance in the North Sea and adjacent waters) survey 

was repeated over a more extensive area in 2005, and survey coverage further extended 

by the 2007 CODA (Cetacean Offshore Distribution and Abundance) survey.  In addition 

to these, other European data-sets now exist that were not available for the Atlas and 

would enhance any future update. 

 

There are several national and international instruments that would be served by an 

updated Atlas; However, perhaps the most appropriate legal driver is the EC Habitats 

Directive (HD; EEC 1992).  All species of cetacean are included in Annex 4 of the 

Directive, which places an obligation on all European Union Member States to accord 

them strict protection. This carries with it the requirement to report on species 

conservation status every six years.  Favourable conservation status (FCS) must be 

assessed with regard to four parameters: natural range, population size, habitat (extent 

and condition) and future prospects.  While some flexibility is accorded to national 

experts, EC advice recommends the use of time series data to detect change in FCS, 

possibly in comparison against favourable reference values.   

 

In 2006 a working group was established to update this cetacean data resource and 

produce a new atlas. It aims to achieve this through establishment of a Joint Cetacean 

Protocol (JCP) rather than a static database. The JCP will comprise standards for the 

integration of cetacean abundance and distribution data collected from European waters 

using a variety of methods. Data will be shared under a common agreement, ideally 

through a web-based portal demanding little maintenance, which would, if necessary, 

restrict access to data not in the public domain. This project has received support from 

ASCOBANS and a growing number of European governmental and non-governmental 

organisations. 

 

As part of the initial phase of the project, exploratory analyses were commissioned by 

UK and Ireland  on a subset of data from the southern Irish Sea, which were considered 

representative of the eventual JCP data resource. The aim of this pilot study was to 

determine how disparate data types might be integrated and what power the final data 

resource may have to detect trends in range and abundance. The results of this work are 

presented here. 

 

Further Work 

 The JCP working group has considered the findings of this report and aim to 

proceed with the project as follows: 

 Clean and collate data-sets to be used for final analysis of the JCP data resource; 

 Develop methods required to allow integrated analysis of all JCP data; 

 Use this analysis to consider how data collection methods can be improved; 
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 Produce summary data-sets using best methods derived from the above analysis; 

 Create agreement for sharing data between partners of the JCP project; 

 Share data via an internet data portal. 

 

 

JCP working group 21st October 2008 
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Executive summary 

The purpose of this work was to make a preliminary assessment of how Joint Cetacean 

Protocol data might be used to detect changes in abundance or range of UK and Ireland 

cetacean species.  We review the monitoring objectives that arise from Article 11 of the 

EC Habitats Directive, and consider what measures might feasibly be monitored.  We 

show that targets such as having high power to detect a 1% annual decline in abundance 

or range over a 6 year reporting period are not remotely feasible, and suggest that a 15-

30% annual decline may be detectable over that period.  Analysis of JCP data is difficult 

because the data are sparse, are collected over a range of spatial and temporal scales and 

often lack direct information about detectability.  We review potential analysis methods, 

suggest methods for data integration and conduct an exploratory analysis of JCP datasets 

from the southern Irish Sea.   More research is required on optimal methods for analysis.  

JCP data would be of much greater utility if more effort were devoted to implementing 

field methods that gather direct information about detectability, such as rigorous line 

transect protocols, even on platforms of opportunity.  Land based surveys, currently part 

of JCP, likely have limited utility for UK and Ireland-level cetacean monitoring, except 

perhaps for very coastal species. 

 

Main recommendations: 

 Continue current efforts to define monitoring metrics and realistic targets. 

 Allocate significant effort to developing and testing statistical methods for spatio-

temporal trend estimation from JCP data. 

 Implement rigorous line transect protocols on all JCP surveys where feasible, 

including dedicated marine mammal observers and double-platform methods.  

This includes platforms of opportunity and volunteer-based surveys. 

Introduction 

EU Member States have a legal obligation under Article 11 of the Habitats Directive to 

undertake surveillance of all cetacean species occurring in their waters to determine their 

“conservation status”, and to report on this every 6 years.  A species is in “favourable” 

conservation status if: “population dynamics data indicate that the species is maintaining 

itself on a long-term basis as a viable component of its natural habitats, the natural range 

of the species is neither being reduced nor is likely to be reduced in the foreseeable 

future, and there is, and will probably continue to be, a sufficiently large habitat to 

maintain its populations on a long-term basis.”   The exact measures reported are open to 

interpretation by Member States (see European Commission 2006), but the above 

guidance leads naturally to a focus on (1) trends in species’ abundance; (2) changes in 

species’ range; (3) designation and monitoring of suitable habitat; and (4) Future 

Prospects. 

 

In the UK and Ireland, one cost-effective method for potentially addressing the first two 

of the above measures is via the Joint Cetacean Database and its prospective successor, 

the Joint Cetacean Protocol (JCP).  The JCP is essentially a collection of survey data and 

related meta-data that have been gathered by various governmental and non-

governmental organizations.  It is being assembled by a group of interested parties called 
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the JCP working group.  Because the data come from a variety of sources, and much of it 

was not collected with the primary aim of determining large-scale trends in range and 

abundance, obtaining robust estimates is potentially very problematic.  The primary aim 

of the short research contract reported here was to make a preliminary determination of 

what outputs might be possible given a concerted effort.  This was achieved in part by an 

exploratory analysis of a subset of the JCP data, from the southern Irish Sea.   

 

More precisely, the research objectives were: 

1. With members of the JCP working group use an effort-related cetacean data set, 

from the southern Irish Sea, to determine how to integrate data types collected 

using different methods and from a range of spatial and temporal scales. 

2. Determine whether these data have the power to detect changes in range and 

abundance, making recommendations where appropriate for ways to improve, if 

possible, their explanatory power. 

3. Identify any further analyses that should be considered for determining how to 

detect trends in range and abundance in the final JCP data set 

4. Report on the findings of the above study to the JCP working group. 

 

The test data were delivered to CREEM during the first part of April 2008, and a 

workshop was held in St Andrews on 21-22
nd

 April 2008 where JCP working group 

members presented information about each dataset including the survey goals, field 

methods, data collection and storage protocols and outputs to date.  A summary of the 

data sources is given in Table 1 (figures and tables are at the end of this document).  Data 

collection methods included dedicated line transect surveys that employed a random 

design for positioning transects, transect surveys from platforms of opportunity (with and 

without distances to detected objects, and from both large and small platforms), and land-

based watches. At the workshop there was also discussion and refinement of the research 

objectives.  (Minutes of that meeting are available from Tim Dunn, JNCC.)   CREEM 

members then pursued the above objectives. 

 

The remainder of this report is structured as follows. Section 0 contains a discussion of 

which monitoring objectives and metrics are implied by the EC Habitats Directive, and 

what may be feasible.  Section 0 contains a discussion of potential statistical methods for 

analysis of JCP data.  Section 0 reports a brief exploratory data analysis.  Lastly, we give 

some conclusions and recommendations for further work in Section 0. 

Monitoring Objectives and Metrics 

It is beyond the scope of this report to provide a comprehensive investigation of exactly 

what objectives may be appropriate and practical for compliance with the EC Habitats 

Directive, and what metrics may therefore be used for cetaceans.  Indeed, a separate 

effort is underway by JNCC to produce a UK surveillance strategy scoping document 

(Sónia Mendes, JNCC, pers. comm.).  Nevertheless, some discussion here will be useful 

in highlighting what outputs may be required from an analysis of JCP data, and possibly 

in aiding the scoping effort. 
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Population dynamics data, population viability and temporal trend analysis.   

The first criterion for determination of favourable conservation status is to determine 

whether “population dynamics data indicate that the species is maintaining itself on a 

long-term basis as a viable component of its natural habitats”.  Ideally, data would be 

available on both demography (survival, fecundity, etc.) and population size, and these 

could be integrated within a population viability analysis (Bessinger and McCulloch 

2002; here assumed to include the more up-to-date versions using a stochastic population 

dynamics model fit to the data e.g., Buckland et al. 2007b).  Such analyses could be used 

to determine the long-term viability of the species, perhaps under different possible future 

management scenarios.  While such analyses are possible for some species in the UK, for 

example some species of songbird (Besbeas and Freeman 2006, Baillie et al.  in press) 

and seabird (Crespin et al. 2006), little demographic data exists for cetacean populations 

in the UK and Ireland (and indeed for almost all cetacean populations worldwide).  

Nevertheless, useful progress can be made in this direction (e.g., Thompson et al. 2000, 

Berggren and Wade 2001). 

 

Such population assessment via mechanistic modelling of the population dynamics, based 

on a knowledge of the species’ biology, is in practice difficult, and by far the more 

common approach is to engage in empirical modelling of abundance data with the goal of 

determining past trends in species’ abundance and using this as an indicator of population 

viability.  Mechanistic vs. empirical modelling approaches are compared in, e.g., Thomas 

et al. (2004) and Berggren et al.  (2008a, b), with the latter having a particular emphasis 

on cetacean monitoring in the EU.  In the remainder of this report, we concentrate 

exclusively on the empirical approach. 

 

There are many potential methods for determining population trends, in part because the 

definition of trend, “a long-term change in mean level”, is intrinsically subjective – what 

is “long-term”?  There are also many issues inherent in trend estimation that can cause 

undesired results.  For example, for relatively short time periods, the state of the 

population at the start of the monitoring period will have a strong influence on the trend – 

a population that is at the bottom of a decadal population cycle will appear to have a 

strongly increasing trend for the first 10 years of  monitoring.  Another example is that if 

the trend is defined as average change in abundance over the monitoring period (i.e., 

slope parameter from a linear or log-linear regression model) then sudden catastrophic 

population declines become harder to spot the longer the monitoring goes on for.  These, 

and other issues with trend estimation, are discussed in detail by, e.g., Thomas et. al. 

(2004) and Berggren et al. (2008a, b).   

Issues arising from the use of relative abundance as a metric 

An ideal metric for trend analysis is population abundance (or equivalently density) 

within the area of interest.  However, many of the data collection methods in the JCP 

database do not lend themselves to estimation of absolute abundance or density (and even 

for those that do, there may be significant problems that mean such estimates are not 

reliable – see later). Therefore relative abundance may be considered for use instead.   
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The pitfalls of estimating trend based on relative, rather than absolute, abundance are well 

known (e.g., Anderson 2001, Pollock et al. 2002, Sauer and Link 2004, Nichols et al. in 

press).  To summarize them requires some notation.  Let Ns be the true abundance within 

the area of interest at time t, let Rt be the measure of relative abundance, and let βt be the 

constant of proportionality linking the two (i.e., ttt NR ).  Assume βt is a random 

variable, with some mean μβ and variance 2 .   

 

The first pitfall is that there may be a trend in the βs that is (positively or negatively) 

correlated with the trend in Ns.  If this is the case then the trend in relative abundances R 

will not accurately reflect the trend in abundance.  It is easy to imagine how this can take 

place – for example, if animal sightability generally increases over time due to better 

observer training, then this will generate a misleading positive trend in the Rs.  This is 

just one example – there are many other reasons why animal sightability may increase or 

decrease over time.  One partial solution is to standardize the data collection protocol as 

much as possible.  However, despite rigorous standardization, trends in the constant of 

proportionality may still remain for unexplained reasons (e.g., Norvell et al. 2003).  Also, 

the potential for standardization of survey methods across the datasets in the JCP may be 

limited.  A second partial solution is to include covariates in the trend modelling that may 

explain variation in the constant of proportionality – e.g., observer, observer experience 

or observer training in the above example.  The problem with this approach is that if the 

pattern in covariate values is correlated with the trend in absolute abundance, then 

including the covariate will mask the true trend.  A significant limitation of this second 

solution is therefore that covariates should only be included if they are thought not to 

vary in the same way as the trend.   

 

The second pitfall is that even when there is no trend in the constant of proportionality, 

its’ value will vary from year to year (according to the magnitude of 2 ).  This causes 

variation in the Rs that is not related to variation in N, and therefore decreases the ability 

of the relative abundance measures to detect a trend.  This issue is often ignored when 

determining the power of methods based on indices of abundance to detect trends, but is 

discussed in detail by Berggren et al. (2008b, especially in Adjunct 1).
1
   

 

Despite these problems, it is often possible to make suitably qualified inferences about 

temporal patterns in relative abundance – examples include those from the North 

American Breeding Bird Survey (e.g., Sauer et al. 2007) and harbour porpoise sightings 

from the European Seabirds at Sea (ESAS) database (Winship 2008).  The caveats should 

always be borne in mind, however, and trend estimation using absolute density or 

abundance measures (or as close to this as possible) should be preferred where possible.  

These issues are well rehearsed and debated in the literature – see, e.g., Anderson 2001 

                                                      
1 It should be noted that the alternative of estimating absolute abundance is often no 
better in this respect, since the variance of estimates of absolute abundance given the 

true abundance at a time point (i.e., )|ˆvar( tt NN ) may have nearly equivalent variance to 

the corresponding variance for the relative abundance index  ( )|ˆvar( ttt NR ), because 

one component of the true abundance estimate is an estimation of sightability. 
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vs. Engerman 2003 vs. Anderson 2003 or Hutto and Young 2002 vs. Ellingson and 

Lukacs 2003 vs. Hutton and Young 2003. 

Power to detect trends 

Power analysis has become a standard tool in assessing the potential utility of planned 

monitoring programs (e.g., Berggren et al. 2008b): it allows us to address questions such 

as “What is the power to detect a 50% decline in (relative) abundance over 25 years”, or 

“How much survey effort is required to have an 80% power to detect a 50% decline in 

(relative) abundance over 25 years”.  The concepts are discussed in many articles (e.g. 

Gerrodette 1987, Steidl and Thomas 2001, Thomas et al. 2004) and user-friendly 

software exists for performing simple power analysis (e.g., Gerrodette and Brandon 

2003). 

 

Here, for simplicity, we will assume that trend is to be estimated using log-linear least-

squares regression on relative abundance indices, and that the criterion for assessing trend 

is a two-tailed significance test on the slope.  We further assume that the coefficient of 

variation of relative abundance is independent of the estimate (see Gerrodette, 1987, for 

some alternatives).  To perform an analysis of the power in this circumstance we are 

required to specify four out of five of the following: number of time points (assumed 

equally spaced, with an observation at each one), rate of population change (i.e., 

regression slope), residual coefficient of variation, alpha level for significance test and 

power.  If any four are specified, the fifth can be calculated. 

 

The most problematic quantity in the above is the residual CV – i.e., the variability in 

relative abundance indices not explained by the trend line.  It has potentially three 

components: (1) sampling variation in the relative abundance indices, given some fixed 

true abundance and constant of proportionality; (2) variation in the constant of 

proportionality (we already referred to the corresponding variance as 2 ); and (3) 

residual lack of fit between the trend line and the true annual abundances.  Assuming 

these sources of variation are independent, they can be combined using the delta method 

(CV of a set of independent random variables multiplied together is square root of the 

summed squared CVs); other assumptions are also possible (e.g., Berggren et al. 2008b).  

Many power analyses mistakenly only consider the first source of variation in making 

their calculations – e.g., Gibbs et al. 1998.  Others (e.g., Berggren et al. 2008b) ignore the 

third source of variation, although this is valid if true abundance is treated as a fixed 

rather than random quantity – see Thomas et al. (2004, section 5.2.5) for a discussion of 

this point. 

 

The general outcome of such analyses is that the monitoring goals initially specified 

when designing surveillance programs are unrealistic.  To show an example of this, we 

need to obtain a realistic set of CVs to work with.  Winship (2008) estimated relative 

indices of harbour porpoise abundance for seven subsets of ESAS data and obtained CVs 

for component (1) above (i.e., just sampling variation) in the range 0.3 to 1.2.  Berggren 

et al. (2008b) estimated combined CVs for components (1) and (2) above using the 

SCANS II survey to be in the range 0.2-0.6 for an ESAS-like survey method and 0.7-0.9 

for a towed acoustic method, depending on assumptions about independence between 
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components (1) and (2) (using their approach 1 – see paper for details).  In general, it is 

hard to imagine obtaining a residual CV (i.e., components (1), (2) and (3) above) of less 

than 0.2 from analysis of future JCP data.  Conversely, it is easy to imagine that such a 

CV may be 1.0, or higher. 

 

The Habitats Directive reporting interval is 6 years.  We therefore calculated the power to 

detect a range of annual population declines (or increases) over 6 years, given CVs in the 

range 0.2-1.0, and assuming an alpha-level of 0.1 (which is generally considered liberal).  

The results are summarized in Figure 1.  For example, imagine the target power of a 

monitoring program was 0.8.  If the program achieved the best conceivable CV (0.2), 

then an annual rate of decline of 0.15 is required for that level of power.  Note that a 

decline of this rate over 6 years corresponds to the loss of approximately 60% of the 

population
2
.  If the CV was 0.4, an annual rate of decline of 0.33 would be required for a 

power of 0.8; this corresponds to the loss of approximately 90% of the population over 6 

years. 

 

It has been suggested (European Commission 2006, p. 43) that to comply with the EC 

Habitats Directive, one should be able to determine if each species has undergone a large 

decline in population size, defined as a loss of more than 1% (i.e., 0.01) per year.  Given 

the above figures, this is clearly not feasible.  Indeed, given annual monitoring, it would 

require 32 years to have a power of 0.8 to detect a decline of 1% per year given a residual 

CV of 0.2; the corresponding figure with a (more realistic, but still optimistic for JCP 

data) CV of 0.4 is 49 years.  The total population change over this long time period may 

also not be one considered of biological significance: a decline of 1% per year for 32 

years corresponds to the loss of approximately 30% of the population, and over 49 years 

to around 40%.  Clearly, a re-think of the quantitative targets for monitoring is required. 

Changes in natural range: spatio-temporal trend analysis 

A second criterion for determination of favourable conservation status is that “the natural 

range of the species is neither being reduced nor is likely to be reduced in the foreseeable 

future.”  A species’ range is a difficult thing to quantify precisely, especially for taxa like 

cetaceans that may be highly mobile.  Unusual sightings of many species have occurred 

far outside what is considered to be their core range.  Many cetacean species are also 

known to undergo seasonal migrations.  However, without an unambiguous definition of 

range, it is not possible to quantify whether range is being reduced. 

 

There are many potential range metrics.  One is a definition in terms of probability of 

presence – for example, a species range may be defined as the polygon enclosing all 

points where the instantaneous probability of presence in a 1km
2
 square centred on that 

point is greater than a given value.  A second definition is in terms of density – range is a 

polygon enclosing all points where the average animal density (averaged over a defined 

time window) is greater than some given value.  For species known to migrate, either of 

the above definitions could include a seasonal component. 

 

                                                      
2
 Calculated using 1-(1-0.15)

6
×100 
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Given estimates of probability of presence or density at defined spatial locations and 

times, estimates of range and changes in range over time can be produced via spatio-

temporal analyses – i.e., modelling the presence or density data with covariates that are 

spatially and temporally referenced.  In the case of JCP data, however, we are not able to 

estimate absolute probability of presence or density due to limitations in the data 

collection methods for many of the composite datasets.  We are therefore not able to 

estimate “absolute” range
3
, and any spatio-temporal modelling to changes in range will 

be restricted to “relative” measures of range, such as changes in encounter rates per unit 

time and area.  The issues here are similar to those that arose in assessing trends in 

relative abundance. 

 

We note that the use of relative (rather than absolute) measures of range is nearly 

ubiquitous for other taxa, often in the form of atlas schemes based on standardized survey 

protocols (e.g., Asher et al. 2001, Gibbons et al. 1993).  One difference between these 

schemes and the JCP is that the former use a single (or small number) of standardized 

protocols, while the JCP comes from many diverse surveys.  Nevertheless, the monitoring 

of “relative” range appears to be quite acceptable for other taxa. 

Habitat assessment 

The third criterion, for determination of favourable habitat status, is that “there is, and 

will probably continue to be, a sufficiently large habitat to maintain its populations on a 

long-term basis”.  Research into determination of what comprises “habitat” for free 

ranging species is an enormous topic, encompassing many branches of ecology (see, e.g., 

review in Aarts 2007).  Determining habitat extent will be particularly difficult for most 

cetacean species if the definition of habitat is taken to include places where there are food 

stocks, since robust information about diet is lacking for most cetacean species, as is 

information about the presence of potential food such as fish stocks (see, e.g., Torres et 

al. in press).  The importance of other factors that potentially affect habitat suitability 

(under some definitions of “habitat”), such as level of ocean noise, are also unknown. 

 

A practical approach, at least for species that are not central-place foragers, is to define 

habitat empirically, in terms of measurable biologically-relevant and temporally-stable 

environmental variables that correlate with higher animal density.  This reduces 

identification of habitat to a model selection exercise, given suitable data on animal 

density and potential covariates.  Notwithstanding the caveats given in previous sections 

about the problems of using relative density and abundance measures in place of absolute 

measures, it may be possible to include identification of species’ habitat preferences 

within the same modelling framework as the spatial or spatio-temporal models of the 

previous sections.  Note, however, that the identification of potential candidate covariates 

will be different depending on the analysis goal: for spatial or spatio-temporal modelling 

to look at range and changes in range, it is quite acceptable to include explicit space 

covariates (such as latitude and longitude); for identification of suitable habitat, the 

                                                      
3
 “Absolute” does not imply here total range, since the total range of many species exceeds the survey 

boundaries of UK and Ireland waters.  Instead, “absolute” is in terms of the previous definitions – e.g., 
absolute probability of presence at defined locations. 
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inclusion of such covariates would make little sense unless to highlight the absence of a 

key biological covariate determining animal density patterns. 

A framework for Spatio-Temporal Trend Estimation from JCP Data 

In this section we consider statistical models that may be appropriate for the analysis of 

JCP data, with metrics from the previous section in mind.  We begin with a general 

formulation, focussed on the context of line transect sampling where the formulation was 

initially developed.  We discuss various potential approaches for modelling line transect 

data, before considering how one might perform similar analysis on transect data without 

distances and land-based watch data.  Lastly, we consider methods for joint analysis of 

multiple datasets. We assume throughout that each species will be treated separately, 

although joint analyses of multiple species is a conceivable extension to these methods.  

Due to time limitations, we largely ignore the issue of species that occur in compact 

groups, although extensions to these methods can be (and have been) used for this 

situation (e.g., Bravington et al. 2002). 

 

A more comprehensive discussion of the various approaches recently developed for 

spatial and spatio-temporal analysis of line transect data, arising from a recent technical 

workshop on this subject held in St Andrews, is in preparation (Thomas and Scott-

Hayward, in prep.). 

General formulation – line transect context 

One general approach for considering the random processes generating observations is 

that of a spatial point process (e.g., Schweder 1974, Hedley 2000).  Assuming 

independence between animals, their locations in space and time is a realization of an 

inhomogeneous Poisson process with intensity D(x, y, t), where x and y are spatial 

coordinates and t is time (the time index is intended to account for seasonal and annual 

changes in intensity, rather than temporal changes at the level of a survey boat moving 

along a transect; temporal models are not considered in the references cited in this 

section).  Under this definition, the number of cetaceans in an area a is a Poisson random 

variable, with mean 

 
ayx

dxdytyxDta
),(

,,, . (1) 

 

This formulation can be extended in various ways.  For example, to allow for cetacean 

species that occur in compact groups, one could use a marked spatial point process model 

where the mark is the group size (e.g., Hedley 2000).   To relax the assumption of 

independence of locations of cetaceans (or cetacean groups) and allow for effects such as 

clumping or repulsion, one could consider more general models such as Neyman-Scott 

models (e.g., Waagepetersen and Schweder 2006) or Markov-modulated Poisson models 

(Skaug 2006, Bravington 2008). 

 

In a line transect survey, transect lines are traversed by an observer (or observers), and 

the location of detected animals recorded.  Not all animals within each survey segment 

are detected.  Under the assumption that detections are independent random events, the 

number of animals recorded in a segment a can be thought of as the outcome of a 
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thinning of the point process.  A thinned point process is also a Poisson process, so the 

number of animals recorded in segment a is a Poisson random variable with mean 

ayx
d dxdygtyxDta

),(
,,,  

where g is the probability of detecting an animal given covariates θ, which may 

include spatial location (perhaps relative to the transect line) and other factors of 

importance such as observer, sea state, etc.  Thus, given parametric models for D() and 

g(), a likelihood can be constructed for the location of detected animals (e.g., Hedley 

2000; related approaches are taken by Royle et al. 2004 and Buckland et al. 2007a). 

 

Two-stage approaches to modelling density in line transect surveys 

In practice, a two-stage approach is usually taken, where the detection function g() is fit 

first, and then the density function D() is fit conditional on the estimated detection 

function parameters.  This is because probability of detection is sensibly thought of (and 

parameterized) as being a function of local effects such as distance of the animal from the 

transect line, while variation in density occurs at much larger spatial scales.  Hence there 

is little information shared among the two components, and therefore little loss in 

separating them.  By dividing the problem into two pieces it becomes conceptually and 

practically easier. This is discussed further by Hedley (2000), and a good example of the 

small loss in information caused by implementing a two-stage approach is given in Royle 

et al. (2004), where the detection probability estimates are nearly identical, within nearly 

identical precision, in a one-stage and two-stage approach. 

 

The two-stage approaches can be broadly divided into two sub-groups, depending on the 

response variable modelled in the density function estimation stage (Hedley 2000, Hedley 

and Buckland 2004, Hedley et al. 2004).  The first approaches (“count methods”) are 

based on modelling the counts of numbers of animals (or groups) detected in segments of 

transect line.  The second (“waiting times/distances/areas methods”) are based on 

modelling the times, along-trackline distances or areas surveyed between successive 

detections.  We briefly discuss these below. 

 

In count methods, the transect lines are divided into segments (or legs) where covariate 

values affecting density and detectability (apart from animal-level covariates such as 

group size) are judged to be constant.  The response variable, the number of animals (or 

groups) detected per segment, is then modelled as a function of covariates judged to 

affect density.  There are several ways to take detectability into account; a common 

method is to include the area effectively searched (i.e., transect length times width of the 

transect strip times average detection probability) as an offset term in the model.  Such 

methods are discussed in detail in Hedley (2000), Hedley and Buckland (2004), Hedley et 

al. (2004) and are available in a test version of the software Distance (Thomas et al. 

2008).  An advantage of count methods are that they are generally relatively easy to 

apply, since the model can be formulated as a standard generalized linear or additive 

model (GLM/GAM, with the counts assumed to have a Poisson distribution, for 

example), for which robust general fitting software is available.  A significant 

disadvantage is that dividing up transect lines into a large number of small segments (so 



- 14 - 

that covariate values can be assumed constant) usually results in a large number of 

segments with zero counts, so that standard GLM/GAM models provide a very poor fit.  

Relatedly, there is often residual autocorrelation after modelling, so that the standard 

assumption of independence between data values does not hold, and model selection and 

variance estimation are compromised.  Again relatedly, the determination of segment size 

is arbitrary and can affect the results.  Various solutions have been proposed, including 

zero-inflated models (for dealing with the excess zeros), mixed effects models (for 

dealing with the residual autocorrelation), Markov-modulated models (for dealing with 

the same issue via the model rather than error term), parametric bootstrap (for better 

variance estimation); these are reviewed by Thomas and Scott-Hayward (in prep.). 

 

Waiting time/distance/area methods are related to time-to-event methods in other areas of 

statistics, such as survival analysis in industrial and medical statistics.  Here the response 

variable is the time (e.g., Bravington et al. 2002) or the along-trackline distance (e.g., 

Skaug 2006) to next detection, which is modelled as a function of the covariates thought 

to affect density.  Detectability can be incorporated in various ways; for example Hedley 

(2000) modelled the area effectively searched before next detection as the response 

variable.  Variation in density between detections can also be accounted for (see previous 

3 references for examples).  The major advantage of these methods is that there is no 

need to divide the trackline into arbitrary segments, and so it is much easier to construct 

models that provide an adequate fit to data.  However, unexplained local clustering in 

sightings is still a common issue, leading to implementation of methods such as Markov-

modulated models (Skaug 2006) to deal with it.  A disadvantage is that analysis is not 

easily performed using standard software, once variation in density between detections is 

accounted for, making them less accessible at present to practitioners.  An example of the 

application of these methods to potential JCP data is Henrys (2005), who analyzed line 

transect data collected from two ferry routes by the Biscay Dolphin Research Programme. 

 

Various other issues have been identified in the spatial and spatio-temporal density 

modelling of line transect data, and solutions are an active area of current research (see 

review by Thomas and Scott-Hayward in prep).  The appropriateness of biologically-

motivated covariates (such as habitat covariates) versus covariates of convenience such as 

latitude and longitude is an issue that has already been mentioned.  Semi-parametric 

methods based on smoothing are often used in modelling covariates; there are many such 

methods and their relative merits is a matter of debate.  Data-based methods for selection 

of the amount of smoothing is an issue, as is the tendency of standard smoothing methods 

to extrapolate wildly into un-surveyed regions and to cope poorly with complex 

topography (one solution to these is proposed by Wood et al. 2008).  For the newer 

methods that allow small-scale local variation as well as large-scale smooth patterns (e.g., 

Skaug 2006), an issue is how to separate these two scales, and when it is appropriate to 

exclude the small-scale variability from variance estimation when making inferences.  

Lastly, appropriate methods for modelling spatial (and spatio-temporal) variation in 

group size, and for cascading uncertainty through the various stages of modelling to 

produce valid overall variance estimates, are issues. 
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Other two-stage approaches exist that lie outside the dichotomy outlined above.  For 

example, Kaimi (in prep.) has developed a Bayesian approach to spatial density surface 

modelling from line transect data, based on tessellations. 

Relevance to transect data without distances 

Most of the methodology discussed in the previous section is applicable to the situation 

where distance data are not available, or are not of sufficient reliability for probability of 

detection for each observation to be estimated using distance sampling methods.  Clearly, 

however, explicit corrections for detection probability cannot be made – for example 

through the use of area effectively surveyed as an offset in the count method.  Instead, 

segment length must be used (or area surveyed if a fixed truncation width was used), and 

the potential confounding between density changes and changes in detectability can be 

addressed, as much as possible, through the use of covariates.  As noted earlier, care must 

be taken when trying to remove effects of variation in detectability, not to use covariates 

that might be correlated with density changes – otherwise changes in density will be lost 

in the modelling. 

 

An example of a waiting times-based method applied to relative abundance data (ESAS 

data for harbour porpoise) is Bravington et al. (2002), although their goal was 

identification of spatial hotspots rather than long-term temporal trends.  A correction for 

detectability differences induced by school size and sea state was used, based on a 

separate analysis of SCANS data.  In addition, sea state (again) and vessel speed were 

used as detection related covariates.  Random effects-based methods for dealing with 

potentially important covariates such as observer and vessel that have many factor levels 

were suggested. 

 

An example of a count-based method applied to relative abundance data is given by 

Winship (2008), who modelled spatio-temporal patterns in harbour porpoise encounter 

rates using 7 subsets of ESAS data, chosen to be as internally homogeneous as possible 

with respect to factors affecting detectability, and to limit potential confounding between 

such factors and variation in density.  Factors shown to impact on encounter rates, and 

unlikely to be related to variation in density included sea state, visibility, time of day, 

observer and vessel.  A number of strategies were used to cope with various issues in the 

data: the response variable was assumed negative binomial (to deal with over-dispersion); 

some nuisance covariates were modelled as random effects (as they were present in the 

data at many levels); diagnostics included checking for autocorrelation in the residuals. 

Relevance to land-based watches 

Similar methods can be used to analyze temporal patterns in encounter rates in land-based 

watches.  However, even if positional data are collected on sightings, it is not 

straightforward to use this to estimate detection probability using distance sampling 

methods, as a fundamental assumption is violated: that the distribution of true animal 

density with respect to distance is known
4
.  Protocols that require two independent 

                                                      
4
 This distribution is known in standard distance sampling applications because a large number of point or 

line transects are placed in the study area using a random survey design – see Buckland et al. (2001). 
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observers to operate, or supplemental data on animal distribution from a separate survey, 

can be used to circumvent this problem, but such advanced methods are rarely used in 

practice in land-based watches.  A more feasible approach may be to use data truncation 

to restrict the survey area to one where it is assumed no animals are missed.  An 

analytically complex alternative that may be feasible for the Cardigan Bay data is 

estimate the distribution of animal density with respect to distance from the watch points 

using data from the independent line transect surveys – see Marques (2007) for an 

example of this type of analysis.   

 

Multiple land-based watches could potentially be used to provide spatio-temporal 

information, but there are rarely enough spatial locations to enable spatial modelling 

methods of the types described in previous sections to be used. 

 

One potential issue when comparing absolute or relative density estimates from land-

based watches with those from transects is that of time.  Distance sampling methods, 

including those that take place at points, are conceived as taking a “snapshot” of the 

density at an instant in time.  When the observer is stationary at a point, clearly the longer 

the watch period, the greater the number of animals that will be observed, due to animal 

movement.  Hence to make fixed point surveys comparable with those from transects, 

either a snapshot approach must be implemented (where the data are the location of 

animals known to be in the monitored area at a set of instants in time), or other 

approaches based on instantaneous cues (such as surfacings) used (see Buckland 2006 for 

a discussion of this issue in the context of point surveys for birds).  If naïve encounter 

rate measures are used, such as number of detections per 15 minute interval, then land-

based methods may be used to supplement temporal trend information from transect 

surveys, but their relative encounter rates will always be different and this will need to be 

accounted for in any joint analysis (see section 0)
5
.  Possible ways to implement 

snapshot-type methods for land-based watches include so-called “scan sampling”, where 

regular scans are made and the locations of animals in view are recorded, as well as 

methods where accurate records are kept of each sighting event; there are many caveats 

with each approach and these are discussed (in the bird context) by Buckland 2006. 

Methods for integrating data from multiple sources 

JCP data come from a variety of survey types: designed surveys (where survey effort is 

located with an element of randomization) vs. platforms of opportunity; transect surveys 

with and without a rigorous distance sampling field protocol, and land-based watches.  

There are (at least) seven approaches for integrated spatial or spatio-temporal modelling 

of these data:   

1. Use only designed line-transect data sets, and perform a standard design-based 

distance sampling analysis treating each dataset as a stratum.  This is clearly not 

tenable given current JCP data, as it will involve discarding the majority of the 

surveys and leave too little to make reliable inferences about spatial or temporal 

                                                      
5
 Note that animal movement can be a problem for transect-based surveys too, if vessel speed is slow 

relative to animal speed – see Buckland et al. (2001) for a discussion of the issues and DiTraglia (2007) for 
some initial steps towards methods for addressing it.  The scale of the potential problem will vary from 
species to species, depending on their speed and reaction to vessels. 
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patterns. Also, it would be important to assess the extent to which each line-

transect data set is capable of producing an unbiased estimate of density, or, more 

generally, how potential biases may vary among surveys.  For example, variation 

in vessel speed and noise between surveys mean that there is a varying effect of 

animal movement.  Double-platform survey methods have the potential to deal 

with responsive movement issues (in trial mode, see Laake and Borchers 2004), 

but rely on at least one platform being high enough to detect animals before 

movement.  Even non-responsive movement will bias estimates when vessels 

move relatively slowly compared to the rate of animal movement (discussed in 

Buckland et al. 2001). 

2. Use all line-transect data (designed and platform of opportunity) in a distance 

sampling model-based analysis of spatial and spatio-temporal trends in absolute 

density or abundance, using one (or more) of the methods described in sections 0 

and 0.  This is also unlikely to be tenable due to loss of data, for historical surveys 

at least, although if future data collection protocols are modified it may be 

possible in the future (see section 0, Conclusions, below). 

3. Use all line transect data, plus “comparable” transect data that does not have 

distances, in a two-stage analysis.  Firstly, a distance sampling analysis of the line 

transect data is performed to estimate detection probability and covariates 

affecting detectability (such as sea state, vessel height and speed, group size, etc.).  

This analysis is then used to “correct” both the line transect and the transect data 

that does not have distances (e.g., by calculating effective strip width given 

covariate values in the non distance surveys, etc.).  A model-based analysis as 

described in Section 0 is then performed.  Determining which parts of the data are 

“comparable” can potentially be problematic – for example this type of analysis 

was performed on ESAS data by Bravington et al. (2002), using SCANS data to 

correct ESAS data for detectability – although sea state was still required as a 

further correction for the ESAS data, and the SCANS data were not used at the 

density surface modelling stage.  This approach deserves further investigation.  

4. A more integrated, single stage, approach to the previous method could be 

envisaged, in which the detection function is fit to the line transect data at the 

same time as the spatial or spatio-temporal density surface model is fit.  There is 

potentially information in the change in encounter rate with different covariate 

conditions in the non-distance data that could be used to help fit the detection 

function.  Again, this kind of approach deserves further attention. 

5. Use all transect data, whether distances were collected or not, and ignore the 

distance data from the line transect portion, instead modelling relative density or 

abundance.  Instead, include covariates in the encounter rate modelling that are 

common to all datasets to attempt to deal with detection issues.  This is a multi-

dataset extension of the approach described in section 0, as implemented, e.g., by 

Winship (2008).  It does not make use of the distance sampling data to estimate 

detectability, but avoids the need to discard non-comparable data as was required 

by the previous method.  This is another approach that requires further 

investigation. 

6. Use the results from separate analyses of all possible datasets in a meta-analysis 

of absolute or relative density or abundance.  The methodology is discussed 
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further in section 0, below.  The conclusion in that section is that it does not make 

best use of the JCP dataset. 

7. Include all available data, including that from land-based watches, in a joint 

analysis.  This is discussed further in section 0, below. 

Meta-analysis of survey results 

In this approach, comparable estimates that are the outputs from different surveys are 

jointly modelled to produce a composite estimate of spatial and/or temporal trend.  For 

example, imagine there are multiple estimates of a species’ density, made by various 

survey methods over a range of time periods and subsets of the area of interest.  The 

density estimates could be modelled in a GLM/GAM framework (likely as gamma-

distributed random variables), with covariates including (smooths of) time and space 

(e.g., centre of area studied by each survey).  The number and spatio-temporal coverage 

of the survey estimates will limit the amount of flexibility possible for the covariates.  If 

there were thought to be biases in the density estimates, then additional covariates 

thought to affect bias, such as survey method, survey agency, etc, could be included.  

Such an approach is also feasible with relative density (e.g., encounter rate) as a response 

for surveys that cannot estimate density. 

 

It would be sensible in such an analysis to weight the individual survey estimates by a 

measure of precision, so that more precise estimates get a higher weighting in the 

analysis, and by area studied, so that estimates covering a larger part of the overall area 

get a higher weighting.  The latter could also be achieved by modelling estimated 

abundance and using studied survey area as an offset.  

 

Using the centre of each studied survey area as a covariate will clearly result in a loss of 

information about the shape of the area in each survey.  A possible extension, would be 

into a hierarchical modelling framework where, for example, expected abundance for 

each survey was modelled using a formulation like that of equation (1) and estimated 

abundance is related to true abundance via a second stochastic process.  For example, if 

Ns denotes the true abundance in the region studied by survey s with region area as, and 

sN̂  denotes the survey estimate, then a potential model is 
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(lognormal, rather than gamma, would be another potential distribution for the second 

level).  Such models could not be fitted with standard GLM/GAM tools.  These ideas 

may warrant further investigation; nevertheless, the spatial aggregation required to 

produce per-survey estimates (even if results are stratified into regions) will still 

inevitably result in a loss of information relative to working with the raw sightings data.  

Since raw data are available within the JCP we do not pursue this method further here. 

Analysis of raw sightings data from all data sources 

As discussed already, although all component surveys of the JCP contain data that are 

spatially referenced, different components naturally produce different output measures.  
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Surveys that implement a line transect protocol are potentially capable of producing 

absolute density estimates, at least along the transect lines surveyed (in the case of 

platforms of opportunity).  Transect surveys that do not rigorously implement line 

transect protocol, or do not collect distance information at all, can produce encounter rate 

per unit transect length statistics.  As currently implemented, the land-based watches 

provide encounter rate per unit time (15 minute intervals for the Cardigan Bay watch 

data).   

 

Jointly maximizing over separate sub-models 

One option for an integrated analysis is to model each data source using whatever 

measure and detectability-related covariates that are most natural for it, but to include in 

all models the same spatio-temporal covariates, and then jointly maximize the likelihood 

over all models.  For example, line transect data could be modelled by assuming that 

counts follow a Poisson distribution and using effective area as an offset; non-distance 

transect data could be modelled by again assuming counts follow a Poisson distribution 

but using line segment length as an offset and including covariates such as observer, sea 

state and platform in the sub-model for those data; land-based watch data model count 

per 15-minutes as a Poisson variable with sea state and observer.  In addition, all three 

types of models would include the same spatio-temporal covariates: for example 

assuming a linear trend through time (log-linear if a log link function is used) and a low-

dimension spatial smoother for spatial pattern.  A likelihood could be derived for each 

sub-model, and this would be jointly maximized.  This could not be done using standard 

GLM/GAM tools (because there are multiple models), making the best approach a 

statistical research problem. 

 

Integrated analyses where multiple data types are jointly fit are common in other 

branches of statistical ecology, and an issue that can arise is the need to scale different 

components of the likelihood if the input measures are very heterogeneous (e.g., Maunder 

and Langley 2004).  This is something that would need to be investigated, but could 

particularly be a problem if a different measure were used for some survey types – for 

example if waiting time between detections (see Section 0) were used for the line transect 

surveys but counts per 15 minute watch period were used for the land-based data.  

Without scaling, some surveys could receive undue weight in the joint maximization just 

due to the nature of the input measure. 

 

Joint modelling using a common measure 

An alternative approach for integrated analysis is to search for a common measure that 

could be used for all datasets.  The advantages of this approach is that it may be possible 

still to use standard statistical tools such as GLM/GAM; a disadvantage is that some 

compromises or inefficiencies will inevitably arise, as will become clear. 

 

One potential common measure is the waiting time to next detection.  However, this is 

not recorded in a few surveys, and is recorded in discrete time in others (e.g., the land-

based watches).  It is also hard to know how to reconcile land-based watch waiting times 

with those from shipboard surveys without invoking some model of animal movement, 
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which would considerably add to the complication (although some accounting for 

movement may be needed in any case; see earlier note). 

 

A more natural common measure may be the count per unit space and time.  Modelling 

would then be on the counts, with the amount of space and time that each count record 

was collected in used as an offset.  However, transect surveys are usually regarded as 

“snapshots” in time, which means that animal movement does not have to be considered 

(although it is sometimes a problem in practice, leading to unreliable density estimates in 

line transect surveys – see earlier note).  Rather than get into issues of modelling 

movement (if it can be avoided), it may be simpler to use a measure of count per unit 

space, and to consider the 15-minute watch periods for the land-based surveys as a 

snapshot.  The offset would then be area effectively searched for line transect data, 

distance along transect line for non-distance transect data, and possibly area searched for 

watch data (if some data outside this area could be truncated).  Note that these offsets are 

different for the different data sources, which means that, at the least, the model would 

have to include a factor covariate for “survey type” that reflects the different meanings of 

the counts for each survey type.  Also, nuisance covariates (such as sea state, etc) would 

need to be included for the non-distance sample surveys, but the factor levels could be set 

to be all the same for the distance sampling data, as such things will have already been 

accounted for in the effective area offset.   

 

It is not clear at this stage whether such an approach has merit and is workable in 

practice.  This is a suggested area of further research. 

 

In all of the above cases, inclusion of land-based watch data at 15 minute intervals is 

likely to cause significant temporal autocorrelation in residuals, unless a model that 

allows small-scale (perhaps hourly, daily or weekly) temporal clustering in sightings is 

included.  This will be another topic for further research. 

Exploratory Analyses of Irish Sea Data 

Table 1 gives a summary of the data sources discussed at the April workshops.  Data 

were not available for two data sources, and time limitations prevented us from 

requesting the missing data.  These are source C (Sea Watch ad libitum line transect 

surveys in Cardigan Bay) and E (ESAS data) – for the latter sightings information but no 

effort data were provided.  The absence of these data did not affect our conclusions as 

time for exploratory analysis was extremely limited.  We also note that other datasets are 

potentially available for the study area; nevertheless, we make some conclusions based on 

the data available for this analysis. 

 

Figure 2 shows the approximate spatial extent of the datasets (including C and E).  A few 

things are immediately apparent: 

 While some areas (e.g., Cardigan Bay SAC) are very well covered by survey 

effort, the effort in other areas is very sparse, or non-existent. 

o There is no survey effort in the current dataset in the south-east part of the 

study area, between Pembroke and Lundy Island (around 2,300km
2
; for 

comparison, the whole study area is approximately 28,750km
2
).  Similarly, 
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there is almost no effort in the north-east part, east of Anglesey (around 

2,000 km
2
).  Any estimates on animal populations into these areas would 

necessarily be extrapolations. 

o There is also no effort in the middle portion of the study area (from 

Holyhead down past Bardsey Island and east, around 5,000km
2
).  

Estimates of animal populations here would necessarily be interpolation. 

o In general, effort off the Irish coast between Dublin and Rosslare is very 

sparse. 

o We note, however, that other data may be available to fill in these gaps. 

 The area covered by the land-based watches is insignificant in comparison with 

the size of the study area, and this area is also covered by other data sources 

(although clearly not with the same level of temporal resolution). 

 

Survey effort for each of the available datasets is shown by year in Table 2.  The table 

indicates that there is some overlap in time between all the surveys, raising hope that it 

may be possible to disentangle true changes in density from survey-specific variation in 

sighting rates.  However, there is, for example, almost no spatio-temporal overlap 

between the St George’s channel (D) and ferry (F) data, and the Cardigan Bay (A and B) 

and Sulaire (G) surveys: while there is some Sulaire survey effort outside of Cardigan 

Bay, very little of it occurs in 2003-2007 which is when the St George’s channel survey 

and the bulk of the Ferry data were collected.  This type of lack of overlap is a common 

feature of these type of data (e.g., Bravington et al. 2002, Winship 2008), and can 

severely limit inference.  A full account of all available data for this area would be 

needed before the potential level of confounding could be assessed in this area. 

 

Nevertheless, for illustrative purposes, we attempted a very simple modelling exercise on 

encounter rate, using just the data for which we could conveniently obtain spatially 

referenced effort segments, segment length, and counts of cetaceans detected (all species 

combined) per segment.  These datasets were the Sea Watch dedicated surveys in 

Cardigan Bay (B) and St George’s Channel (D), the IWDG ferry surveys (F), and the 

Sulaire surveys (G).  The years used for each survey are indicated in bold face in Table 2; 

others could potentially have been included as well, as could additional data sources, but 

lack of time precluded this.  Our expectation is that the annual and large-scale spatial 

estimates would have been almost identical with inclusion of the land-based watch data, 

but may have changed somewhat with the inclusion of ferry and ESAS data.  

 

Initial data screening rejected effort legs that were clearly incorrectly positioned (e.g., on 

land), or had unfeasibly long or short lengths, or that could not be matched with sighting 

data (for example because time stamps were missing) – these only accounted for a few 

percent of the data.   

 

The models fitted were generalized additive models (GAMs), using the mgcv package 

within R version 2.8.1.  A Poisson response was assumed, and a log link function used.  

The response variable was cetacean sightings (all species pooled) per segment and 

segment length was used as an offset.  A tensor product smooth of latitude and longitude 

(both at the mid-point of each segment) was included in all models.  Survey dataset (B, 
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D, F or G) was included as a factor covariate.  Additionally, models with a linear year 

term, a smooth year term (thin plate spline), and no year term were tried.   Degrees of 

freedom for all smooths were estimated by cross validation.   

 

All models fit the data quite poorly, with very little of the deviance explained (<10%), 

and a poor residual distribution due, largely to the many zeros in the data.  The survey 

covariate appeared to have a significant effect, with the St George’s Channel and Sulaire 

surveys having a slightly higher encounter rate than the Cardigan Bay survey, and the 

ferry surveys having a significantly lower encounter rate.  Note that this could either 

reflect spatio-temporal variation in density, or a true effect of the surveys.  The model 

that included a smooth year term had the lowest UBRE score (0.186), closely followed by 

that with the linear smooth term (0.197), and the model with no year term last (0.222).  

The estimated year smooth term is shown in Figure 3, and the spatial smooth in Figure 4.  

These results are shown merely for illustration – the model is too naïve to warrant serious 

interpretation.  The bounds for predictions from the spatial smooth in Figure 4 are given 

by a minimum bounding rectangle on the survey points, intersected with the study area 

boundary.  Nevertheless, the predictions are extrapolations in both southern corners of the 

rectangle, and based on very few data along the northern edge.  Predicted encounter rate 

in the south-west is quite high, and this is almost certainly spurious,  as is the hotspot in 

the north-west.  Similarly, the much higher encounter rate predicted for the south-east is 

likely due to leakage from the Cardigan Bay area.  Better smoothers that address both 

extrapolation and leakage problems have been developed by Wood et al. (2008).  Overall, 

the only high encounter rate area that seems well supported by abundant data is that in the 

St George’s Channel area, to the south of the study area.   

 

Despite the clear problems, we have shown that the datasets can be combined and 

analyzed together.  Obvious next steps in the short term are to include the other datasets, 

split the encounter rates up by species, use better smoothing methods and investigate the 

potential for inclusion of covariates such as sea state, vessel speed, platform height and 

observer (perhaps as a random effect) that are known to affect sightability and are 

collected on all surveys, as well as covariates such as season that are known to affect 

density. 

Conclusions 

Monitoring objectives and metrics 

 In the absence of any demographic data, count data may be able to yield 

appropriate metrics for compliance with the EC Habitats Directive.  There is a 

need for Member States to continue their consideration of which metrics are to be 

used for monitoring. 

 It is premature to discuss the exact size of trends that may be detectable, since the 

metrics are not yet defined and the required variance components unknown.  

Nevertheless, it is quite clear that very small population trends, such as 1% per 

year, are not detectable in any reasonable time span.  Trends in the order of 15-

30% per year may be detectable over the 6 year time-span imposed by the EC 

Habitats Directive.  Smaller per-year trends will require a longer time span to 

detect. 
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Statistical methods: 

 There are many outstanding issues in spatial and spatio-temporal modelling even 

of high quality line transect data (Thomas and Scott-Hayward in prep.).  These 

issues are even more prominent when diverse sources of data are combined, some 

without the information to directly assess detectability. 

 There are many potential methods that can be applied to JCP data, to inform the 

monitoring objectives.  We have reviewed many of them here, but are unable to 

reach a conclusion as to which is currently best.  Further work is needed. 

 

Exploratory analysis: 

 Very superficial analyses were undertaken on a subset of the data that could be 

made available. 

 There appears to be partial spatio-temporal confounding between time and survey 

method in this dataset, but this may be addressed by looking at all available data. 

 Nevertheless, it appears possible to at least fit linear and additive models to the 

data, although whether they produce sensible results is an open question still. 

 The analyses performed here relied heavily on large amounts of high quality data 

provided by the Sea Watch Foundation.  Such data are not available elsewhere.  

We also used ferry data from the Irish Whale and Dolphin Group.  On the other 

hand, there was not time to make proper use of the other large-ship platforms of 

opportunity data, nor were the SCANS datasets used.  In an analysis of ESAS 

data, Winship (2008) found major confounding between factors that potentially 

explain density and those related to sightability. Hence whether approaches that 

try to separate the two are feasible in general is still not fully known. 

 

Data sets: 

 Land-based watches can cover only a very small proportion of the nation’s waters, 

and so are of limited utility in a nationwide population monitoring scheme unless 

one is prepared to make the strong assumption that temporal patterns seen inshore 

will apply to some larger area.  Examination of the extent to which temporal 

patterns seen on land-based surveys match those on off-shore surveys that also 

cover areas surveyed from land may prove useful.  Land-based surveys may also 

have utility for very coastal species. 

 The lack of direct information on detectability (e.g., via the implementation of 

rigorous line transect survey protocols) significantly limits the options open to the 

analyst, and therefore the reliability of the results.  Either data without direct 

detectability information must be assumed to be comparable with those that do 

have such information, or covariates thought to influence detectability but that are 

not correlated with patterns of density (a very limiting restriction) must be 

included in the spatio-temporal density modelling.  The collection of high quality 

detectability information should receive higher priority. 

 Other survey modalities, such as acoustic monitoring, may be useful; a 

comprehensive review of alternative modalities is in Berggren et al. (2008a, b). 
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Recommendations 

 The current effort to define monitoring metrics and realistic targets for precision 

or power should be continued and completed. 

 A significant amount of research time should be devoted to developing and testing 

statistical methods for monitoring spatial and temporal trends from JCP data.  It is 

clear that the topic is complex, with many issues and potential solutions.  There 

are (at least) three alternative ways forward: 

o Sponsor a relatively short piece of work (in the order of a few months) to 

make significant progress on a spatio-temporal analysis of relative 

abundance in the southern Irish Sea data.  This should be extended 

temporally to include SCANS I and II data, and the datasets that were not 

analyzed for this report, as well as any other available data, should be 

considered for inclusion.  Analysis should be split by species, use better 

smoothing methods (such as those of Wood et al. 2008), and investigate 

the potential for inclusion of covariates affecting sightability that are 

collected on all surveys (potentially in some cases as random effects) as 

well as covariates such as season that are known to affect density.  A 

second test dataset, as different as possible in character, could also be 

used.  Time for data checking and obtaining cleaned data from data 

providers would need to be included in the work specifications.  As well 

as producing initial spatio-temporal estimates for target species, a primary 

outcome would be recommendations on whether and what additional work 

is likely to lead to significant useful outcomes. 

o Commit at this stage to the significant work required to develop the 

required methods to perform an integrated analysis of all JCP data, and 

implement such an analysis.  One aspect that was missing from the current 

study, but that should be investigated in a longer-term research topic, is 

the integration of other survey modalities, such as acoustic data (see 

Berggren et al. 2008a, b).  It is hard to judge accurately how much work 

this would require, without performing the previous step, but a rough 

estimate is that it would require approximately 1 year of time by a well-

qualified post-doctoral level statistician. 

o Fund a PhD student to focus on this topic for the next 3-4 years.  Robust 

and efficient analysis of JCP data would seem like an ideal PhD student 

topic. 

 Serious consideration should be given to whether a rigorous line transect field 

protocol could be implemented on all JCP transect surveys, so that direct 

information on detectability is available directly from all datasets.  In many cases, 

there is no reason why platform of opportunity data should be any less rich than 

dedicated survey data, apart from the transect layout.  For ESAS data, 

consideration should be given to adding dedicated marine mammal observers, 

using SCANS-like protocols.   Training officers could be employed, together with 

an equipment budget, to help volunteer-based surveys, such as those from Ferries, 

to implement the same protocols.  As well as allowing detectability to be 

determined independently from density variation, this should also help to 



- 25 - 

standardize results from the different surveys, potentially resulting in lower CVs 

of the spatio-temporal trend estimates. 

 At this stage, it is not possible to say exactly what common set of covariates 

should be included in the JCP protocol, without further analyses and a discussion 

of the previous recommendation.  Nevertheless, it is clear that it is essential to 

record information on covariates that affect detectability (such as sea state, 

platform height, vessel speed, vessel, observer, survey protocol), as well as the 

usual information about effort and sightings.  For effort, it would be very useful to 

have easy access to the start and end times and locations of each leg of effort.  

Sufficient resources should be allocated to rigorous data checking. 

 Land-based watches appear to have limited value for this purpose.  However, if 

they are to be used, consideration should be given to implementing a snapshot-

like protocol, rather than the current 15-minute window approach. 
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Tables and Figures 

 

Table 1. Summary of datasets discussed in this report. 

 

Dataset 

 

Organization Contact Survey method Spatial range Temporal 

range 

Taxonomic range 

A. Cardigan Bay 

land-based 

watches 

Ceredigion 

County Council 

and others   

Chris 

Pierpoint 

Standardized land-

based watches 

6 sites in southern 

Cardigan Bay 

1994 (3 sites) / 

2004 (3 sites) -

2007 (ongoing); 

year round 

All cetacean 

species, but mostly 

bottle-nose dolphin 

B. Sea Watch 

dedicated line 

transect surveys in 

Cardigan Bay 

SAC 

Sea Watch Giovanna 

Pesante 

Double-platform 

line transect survey 

from small boats 

Cardigan Bay 

SAC 

2001 and 2003-

7; Apr-Sept. 

All cetacean 

species but mostly 

bottle-nose dolphin 

and Harbour 

porpoise 

C. Sea Watch ad 

libitum line 

transect surveys in 

Cardigan Bay 

(data not supplied) 

Sea Watch Giovanna 

Pesante 

Photo-ID survey 

from small boats 

Cardigan Bay, 

focussed on 

Cardigan Bay 

SAC and Pen 

Llyan A’r Sarnau 

SAC 

2001-2007; 

Apr-Oct 

Bottle-nose dolphin 

D. Sea Watch 

dedicated line 

transect surveys in 

St George’s 

channel 

Sea Watch Peter 

Evans 

Double-platform 

line transect survey 

from moderate-

sized boats 

St George’s 

channel (Celtic 

Deep) 

2004-6; May-

Nov 

Mostly common 

dolphin; 7 other 

species 
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Table 1. (contd.) 

 

Dataset 

 

Organization Contact Survey method Spatial range Temporal range Taxonomic 

range 

E. ESAS 

surveys 

(including 

those from 

ferries) 

JNCC and 

others 

Andy 

Webb 

Single-platform 

mostly ship-

based transects, 

much with 

distances 

Patchy; most from 

Dublin-Holyhead and 

Rosslare-Pembroke ferry 

routes. 

1997-2001 (in 

dataset given for 

analysis); year 

round 

All cetacean 

species 

F. IWDG Irish 

Sea Ferry 

Surveys 

IWDG Dave 

Wall 

Single-platform 

transects (no 

distances) 

Principally Dublin-

Holyhead and Rosslare-

Pembroke ferry routes; 

also some Dublin-

Cherbourg and Dublin-

Liverpool 

2001-2008; year-

round 

All cetacean 

species 

G. Sulaire ad 

libitum surveys 

Steve Hartley Peter 

Evans 

Single-platform 

line transect 

Largely Cardigan Bay 

SAC 

1995-2007 (more 

available; earlier 

data does not have 

effort however); 

May-Sept 

All cetacean 

species; 

principally 

bottle-nose 

dolphin 
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Table 2. Annual effort from each survey for which there was effort data.  For the land watch data (A), effort is observer hours.  For 

the Sea Watch datasets (B and D), IWDG ferry surveys (F) and Sulaire data G, effort is line length in km and all available effort 

(designed line transect and otherwise, including casual watching) are included.  Surveys and years used in the exploratory modelling 

exercise are indicated as bold cells in the table. 

 

Dataset 

 

Effort 

units 

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 

A. Cardigan Bay land-based 

watches 

Observation 

hours 

        739 755 611 655 

B. Sea Watch dedicated line 

transect surveys in Cardigan Bay 

SAC 

Transect 

length (km) 

     2779  567 1321 8269 2405 2013 

D. Sea Watch dedicated line 

transect surveys in St George’s 

channel 

Transect 

length (km) 

        1003 1635 2761  

F. IWDG Irish Sea Ferry 

Surveys 

Transect 

length (km) 
     1030 1045 3889 1532  2823 1379 

G. Sulaire ad libitum surveys Transect 

length (km) 
2551 2951 895 2774 2134 1761 4225 832  4505 6893 1311 
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Figure 1. Statistical power to detect a log-linear population trend after 6 years of annual 

monitoring, over a range of annual rates of change and residual coefficients of variation 

(CVs), assuming a constant CV, an alpha-level of 0.1 and a two-tailed t-test for trend.   
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Figure 2. Sketch map showing the approximate spatial extent of each data source. 
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Figure 3. Estimated effect of year on sighting rate of cetaceans from exploratory spatio-

temporal analysis of 3 datasets (B, D, F and G, Table 2).  Year 0 corresponds to 1996.  

The smooth is shown on the scale of the linear predictor; the model was fit using a log 

link function. 
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Figure 4. Heatmap of predicted relative abundance of cetaceans from exploratory spatio-

temporal analysis of 3 datasets (B, D, F and G, Table 2).  Predicted relative abundance is 

high in dark brown areas and low in yellow areas.  Predictions are at a fixed level of the 

survey and year covariates.  The spatial extent of predictions is given by a minimum 

bounding rectangle on the survey data used in the analysis (see Figure 1 for a map 

showing the spatial extent of each dataset). 

 

 


