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Abstract Highly mobile species in the marine environ-

ment may be expected to show little differentiation at the

population level, but this is often not the case. Instead

cryptic population structure is common, and effective

conservation will require an understanding of how these

patterns evolve. Here we present an assessment from both

sides of the North Atlantic of differentiation among pop-

ulations of a dolphin species that inhabits mainly pelagic

waters, the Atlantic white-sided dolphin. We compare

eleven putative populations in the western and eastern

North Atlantic at mtDNA and microsatellite DNA loci and

find reduced nucleotide diversity and signals for historical

bottlenecks and post-bottleneck expansions in all regions.

We calculate expansion times to have occurred during the

early Holocene, following the last glacial maximum

(LGM). We find evidence for connectivity among popu-

lations from either side of the North Atlantic, and differ-

entiation between putative populations in the far northeast

compared with all other areas sampled. Some data suggest

the possibility of separate refugia during the LGM

explaining this pattern, although ongoing ecological pro-

cesses may also be a factor. We discuss the implications for

developing effective programs of conservation and man-

agement in the context of ongoing anthropogenic impact.
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Introduction

Panmixia is a reasonable expectation for highly mobile

species distributed in the open ocean (or in pelagic offshore

waters). There are few obvious boundaries to gene flow, and

there are examples of panmixia or isolation by distance on a

large geographic scale for various marine fish and inverte-

brate species (Garber et al. 2005; Knutsen et al. 2007; Palm

et al. 2009; White et al. 2009, 2010). Connectivity in the

marine environment is often promoted by current systems

carrying gametes or larvae long distances, however the same

systems can sometimes generate barriers to gene flow (e.g.

Shaw et al. 2004; Knutsen et al. 2007). There are also

examples of habitat characteristics correlating to population

structure in fish species, though the degree of differentiation

is often small, for example for black-spot bream (Pagellus

bogaraveo; Stockley et al. 2005) and European flounder

(Platichthys flesus; Hemmer-Hansen et al. 2007).

Marine mammal species often show population genetic

structure, sometimes on a fine geographic scale, and in many

cases this structure is cryptic (see review in Hoelzel 2009).

For delphinid cetaceans, structure is typically most evident

in species with a coastal distribution (e.g. Natoli et al. 2005;

Banguera-Hinestroza et al. 2010; Moller et al. 2011), and

there are sometimes oceanographic or geographic bound-

aries apparently isolating regional populations (e.g. Natoli

et al. 2005). In other cases there is evidence that climatic

cycles have influenced the establishment and dynamics of

these populations (e.g. Hoelzel et al. 2007; Banguera-Hin-

estroza et al. 2010; Amaral et al. 2012). For pelagic species,

the evidence for population structure can be much weaker

(e.g. Natoli et al. 2006; Mirimin et al. 2009; Moura et al.

2013). In all cases population genetic data are essential for

the development of effective conservation strategies, as well

as understanding the mechanisms that generate structure,

especially for species where there are no obvious boundaries

to gene flow. Here we investigate the population genetics of a

pelagic dolphin species, the Atlantic white-sided dolphin

(Lagenorhynchus acutus, Gray 1828), typically found in

temperate and sub-polar waters (Mikkelsen and Lund 1994;

Couperus 1997; Reeves et al. 1999; Weinrich et al. 2001;

Evans et al. 2003; Evans and Smeenk 2008), and with a

distribution range restricted to the North Atlantic (from New

England to West Greenland in the west, and from East

Greenland, Iceland, British Isles, the North Sea and Norway

in the east; Gaskin 1992; Evans and Smeenk 2008).

Little is known about population sizes, ecology,

behaviour and life history of the Atlantic white-sided dol-

phin, with most studies being based on short-term data, or

surveys targeting other species (e.g. Evans 1992; North-

ridge et al. 1997; Reeves et al. 1999; Hammond et al. 2002;

Evans et al. 2003; Reid et al. 2003; Evans and Smeenk

2008; Hammond 2008; but see Waring et al. 2013 for some

improved, regional census data). Information from sight-

ings, strandings and incidental takes has suggested that L.

acutus should be divided into three population stocks in the

Western North Atlantic (Gulf of Maine, Gulf of St. Law-

rence and Labrador Sea; Palka et al. 1997). However, this

stock division remains controversial (Weinrich et al. 2001).

Mikkelsen and Lund (1994) suggested the existence of a

single population of this species across its geographic

range, based on the lack of phenotypic differences among

skulls of 228 specimens from the eastern and Western

North Atlantic. In contrast to the proposal by Palka et al.

(1997), these authors did not find evidence to subdivide

populations into a northern and southern stock in either of

the two areas studied, nor into western and eastern North

Atlantic stocks. Here we use the term ‘stock’ in the context

of management objectives for the protection of diversity

among populations.

The distribution of this species coincides with regions of

major fisheries in the eastern and western North Atlantic, and

there is evidence for impact through by catch (Alling and

Whitehead 1987; Reeves and Leatherwood 1994; Couperus

1997; Morizur et al. 1999; Reeves et al. 1999; Waring et al.

2006; Evans and Smeenk 2008). In addition, mass strandings

(see Bogomolni et al. 2010) and direct exploitation have also

been identified as threats for this species. For example, direct

catches are common in the Faroe Islands, where takes in the

traditional drive fisheries can number more than 500 dol-

phins in 1 year (Bloch and Mikkelsen 2009), and in south-

west Greenland where the annual catch has been estimated at

approximately 50 individuals (Reeves et al. 1999; Reeves

and Leatherwood 1994). It is not known whether these har-

vests pose a threat to populations since, as indicated above,

comprehensive population size estimates do not exist for

most of the North Atlantic. Furthermore, little is known

about their conservation status, in particular their effective

population size, life history and conservation management

stock boundaries.

Given this species’ high mobility and pelagic distribu-

tion, it may be expected that it would show little evidence

of population structure across the species range. However,

various studies on other small cetacean species have sug-

gested an influence of recent climatic cycles on the struc-

ture of re-expanding populations in the North Atlantic and

North Sea (e.g. Tolley et al. 2001; Banguera-Hinestroza

et al. 2010; Fontaine et al. 2010). Therefore, in this study

we use genetic markers to test hypotheses about the pattern

of connectivity for this species across the North Atlantic,

and the potential for re-expansion following the last glacial

maximum (LGM) having contributed to the evolution of

white-sided dolphin population structure. In particular, we

test the hypothesis that this species, adapted to pelagic

habitat, will show panmixia across a broad geographic

range. We also test the hypothesis that like other cetacean
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species in the North Atlantic, there will be a signal for

population expansion since the LGM, and that this may

have contributed to current population structure.

Materials and methods

Sample collection

Atlantic white-sided dolphin tissue and teeth were col-

lected from the western and eastern North Atlantic. Sam-

ples from the Eastern North Atlantic (N = 256) belong to

different geographic locations in Western Ireland, North-

west British Isles, East Scotland, Shetland Isles, Northern

North Atlantic (Faroe Islands and Iceland), Southern North

Sea, Denmark, and Southern England. Samples from the

Western North Atlantic (N = 88) belong to two putative

modern populations (Maine and Massachusetts) and one

nineteenth Century population from Massachusetts (all

other samples are from recent collections; mostly from the

1990s or 2000s). Bone and teeth samples, as well as skin

samples from living and stranded dolphins were obtained

through cooperative agreements with a number of muse-

ums and institutions (see Table S3).

DNA extraction

Total genomic DNA from tissue samples was extracted

following the procedure described by Hoelzel and Green

(1998). Bone and teeth samples were cleaned with a 10 %

solution of bleach for 2 h; and after being rinsed with water

and placed in 95 % ethanol for 2 h, they were dried

overnight at 37 �C and then placed under ultraviolet light

for 20 min prior to extraction. Teeth or bones were ground

using a Mikro-Dismembrator S (�Sartorius). They were

then digested in 2 ml lysis solution (85 % EDTA (0.5 M,

pH8 stock), 10 % Tris–HCl (1 M pH 8 stock), and 5 %

SDS (1 %w/v stock) for 24 h at 55 �C. After digestion, the

DNA was extracted using a Qiagen PCR purification kit,

following the protocol recommended for cleaning PCR

products. The samples were diluted in 0.1 mM Tris–EDTA

buffer and placed at -20 �C until use. All extractions were

conducted with disposable equipment and extraction and

PCR controls were run to detect and minimise any sample

contamination. Extractions were undertaken in an ancient

DNA facility, separate from the modern lab.

Mitochondrial control region (mtDNA) amplification

and sequencing

The mtDNA control hyper-variable region 1 (HVR1;

322 bp) was sequenced for a total of 344 individuals in the

forward direction. Amplifications were conducted under

the following cycle conditions: 94 �C 6 min followed by

35 cycles of 94 �C 30 s (45 cycles in teeth and bone

samples), 54 �C 45 s and 72 �C 45 s. A 600 bp fragment

was amplified when possible using universal primers

MTCRF (50-TTC CCC GGT CTT GTA AAC C-30) and

MTCR-R (50-ATT TTC AGT GTC TTG CTT T-30), from

Hoelzel and Green (1998). This fragment did not amplify

in bone and teeth samples; thus an internal reverse primer

was used to amplify the smaller fragment (322 bp) (MACR

50 CGGCATGGTGATTAAGCT), and all individuals were

compared at this shorter sequence. After amplification,

samples were purified using Qiagen PCR purification col-

umns (Qiagen, Inc.) and were directly sequenced using an

ABI 377 automated sequencer. A subset (57 %) of

sequences was replicated by PCR and sequencing to ensure

accuracy, and all sequencing was in the forward direction.

Approximately 20 % of replicated sequences were repli-

cated from new extractions. The sequences were aligned

using the Clustal X programme (1.83) from Thompson

et al. (1997) using default parameters, and visualised to

confirm base calls using the programme Chromas Pro

(www.technelysium.co.au).

mtDNA analysis

Regional samples

Samples were initially divided into eight geographic zones

in the eastern North Atlantic: Western Ireland (WRL;

N = 80), North West British Isles (NWBI; N = 35), East

Scotland (ESC; N = 31), Shetland Isles (SHT; N = 20),

Northern North Atlantic (NNA; N = 52) Southern North

Sea (SNS; N = 15), Denmark (DMK; N = 14) and

Southern England (SGL; N = 9). Samples from the Wes-

tern North Atlantic were divided into three regional sam-

ples: Western ancient (WNAanc; N = 26), Western

Massachusetts (WNAma; N = 29) and Western Maine

(WNAmn; N = 33) (Figs. 1, 2). After population structure

analyses (see results), the following samples were pooled:

WRL and NWBI (with the combined sample being desig-

nated W-ENA; N = 115), DMK and SNS (combined

sample designated ‘North Sea’; N = 29), WNAma and

WNAmn (designated WNA; N = 62) and ESC and SHT

(designated E-ENA; N = 51). Samples from WNAanc and

NNA were kept as separate populations. In addition,

samples from Southern England (SGL) were included in

the analysis but excluded from most interpretations due to

the small number of samples available for this region. All

population locations and pooled sample sets are illustrated

in Figs. 1, 2. Samples that represent joint populations and

samples of Western North Atlantic origin are mentioned

hereafter with their acronyms.
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Genetic diversity and population differentiation

The selection of the best-fit models of nucleotide substi-

tution and estimated Ti:Tv ratio was carried out using

jModelTest (Posada 2008). The best model was selected

using the Akaike Information Criterion (AIC) as recom-

mended by the authors (Posada and Buckley 2004). The

extent of genetic variation in the control region was

assessed by examining both haplotype (h) and nucleotide

diversity (p), using Arlequin v 3.5.1.2 (Excoffier and Li-

scher 2010). The degree of genetic differentiation among

geographic samples was determined using an Analysis of

Molecular Variance (AMOVA) as implemented in Arle-

quin v 3.5.1.2 (Excoffier and Lischer 2010). The variance

components of gene frequencies were partitioned between

geographic regions (pooled groups, see above): among

regional populations within groups; and within popula-

tions. The differentiation between populations was quan-

tified using the FST index (based only on haplotype

frequencies), the UST index (based on both genetic dis-

tances and haplotype frequencies) and the non-differenti-

ation exact test, analogous to a Fisher exact test, which

tests the hypothesis of a random distribution of different

haplotypes among populations (Wright 1951; Excoffier

et al. 1992; Raymond and Rousset 1995; Goudet et al.

1996). The statistical significance of fixation statistics was

tested using a non-parametric permutation approach with

10,000 permutations, and 100,000 Markov steps in the

exact test. Given that transversions and deletions could be

of evolutionary importance, analyses were run giving these

changes twice the weight of transitions, and compared

against the actual Ti:Tv ratio (20:1) and no weighting (all

transitions). All weightings produced the same results. The

power available to detect structure was tested using the

program PowSim (Ryman and Palm 2006) as described for

organelles (mtDNA) in Larsson et al. (2009). An Ne of

1,000 was set and the generations (t) of drift adjusted to test

different levels of FST. The power was determined as the

proportion of significant outcomes based on the Fisher

Exact test. A median joining network was generated using

the software Network version 4.5.0.0 (Bandelt et al. 1999).

Mismatch distribution and neutrality test

The distribution of the number of observed differences

between pairs of DNA sequences (mismatch distribution;

Rogers and Harpending 1992) was used as an assessment

of demographic history of the population, using the pro-

gram Arlequin v 3.5.1.2 (Excoffier and Lischer 2010). The

calculations were carried out following the principles

explained by Schneider and Excoffier (1999) and using a

coalescent algorithm modified from Hudson (1990). The

hypothesis that the observed data fit the sudden expansion

model was tested using the sum of square deviations (SSD)

(Schneider and Excoffier 1999) and the raggedness index

(Harpending 1994). The confidence intervals for these

parameters are obtained by a parametric bootstrap

approach that assumes that the data are distributed

according to the sudden expansion model.

The coalescence time of expansion in years (t) was

calculated using the relationship s = 2tt, where s repre-

sents the mode of the mismatch distribution (in units of

evolutionary time) and t is the mutation rate for the

sequence used (l = 5 9 10-7; Ho et al. 2007). The t
value was calculated as suggested by Rogers and Har-

pending (1992), using the formula t = lk, where l is the

mutation rate per nucleotide and k is the number of

nucleotides evaluated.

Fu’s test (Fu 1997) and Tajima’s test (Tajima 1989)

were used to evaluate the demographic history of L. acutus

populations. The significance of Tajima’s D was deter-

mined by generating 1,000 random samples under the

assumption of selective neutrality with a coalescent simu-

lation algorithm (Hudson 1990). Both tests were evaluated

using Arlequin v 3.5.1.2 (Excoffier and Lischer 2010).

Mismatch distributions were run with 1,000 replicates for

the parametric bootstrap using DNAsp v 5.10.00 (Librado

and Rozas 2009).

Microsatellite amplification and analysis

In order to determine genetic variability and differentiation

for biparental gene flow among geographic samples, four

regions: Shetland Isles (SHT; N = 14), East Scotland

(ESC; N = 20), North West British Isles (NWBI; N = 17)

and Western Ireland (WRL; N = 25), were evaluated and

compared using 10 microsatellite cetacean-specific loci

(see Table S1 for a list and citations). A subset of the tooth

samples from WNA (N = 21) were included in order to

test differentiation between both sides of the North Atlantic

using five loci (Table S1). Suitable materials were not

available for the remaining sample regions. A reduced

number of loci were screened due to the difficulty with

amplifying microsatellite DNA loci from the tooth sam-

ples. A proportion of samples (10 %) were replicated 2–4

times to ensure accurate genotyping, and any ambiguous

genotypes were discarded. The PCR reactions were run

using 20–50 ng of DNA (10 ll for teeth samples). The

PCR conditions for D08, D22, GT136, FCB4, Igf1,

KWM2a and texvet5 were: denaturation at 95 �C for

5 min, 35 cycles at 94 �C for 45 s, 1 min 30 s at locus-

specific annealing temperature (Table S1), extension at

72 �C for 1 min 30 s. PCR conditions for Ev37 and Ev94

were as described in Valsecchi and Amos (1996). PCR

conditions for TexVet 7:95 �C for 5 min, 35 cycles at

94 �C for 40 s, 1 min 30 s at 59 �C and 1 min 40 s at
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72 �C. PCR conditions for Gt011: 95 �C for 3 min, 35

cycles at 94 �C for 1 min, 1 min 30 s at 59 �C and 10 s at

72 �C.

After amplification, microsatellite loci were run on

polyacrylamide gels using a 377 ABI automated sequencer

and analyzed using ABI GenescanTM and Genotyper TM

with Rox used as the size standard. To identify and correct

genotyping errors (i.e. to check evidence for scoring error

due to stuttering, large allele dropout or evidence for null

alleles), the program MicroChecker (Van Oosterhout et al.

2004) was used. Microsatellite variation was examined by

estimating the number of alleles per locus, gene diversity

and allelic richness using the programme FSTAT 2.9.3

(Goudet 2001). Regional differences in frequencies and

Fig. 1 Eastern North Atlantic

regional samples, showing both

local population sample sites

(solid circles) and combined

sample sets (dashed circles) for

analyses. Dots indicate

sampling locations

Fig. 2 Western North Atlantic regional samples showing local (solid circles) and combined (dashed circles) sample sets. Dots indicate sampling

locations
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deviation from the Hardy–Weinberg equilibrium were

tested using the GENEPOP 1.2 programme (Raymond &

Rousset 1995) and Arlequin 3.5.1.2 (Excoffier and Lischer

2010). Linkage disequilibrium to test the null hypothesis of

independence between genotypes was tested using FSTAT

2.9.3 (Goudet 2001). Population differentiation was

assessed using the fixation index (FST) approach of Weir

and Cockerham (1984) implemented in Arlequin. The

M-ratio statistic was used to test for signals for population

bottlenecks (Garza and Williamson 2001, run in Arlequin

using default parameters), chosen in preference to alter-

natives based on the outcome of various simulation studies

(e.g. Williamson-Natesan 2005; Peery et al. 2012). Type 1

errors are corrected using the Boferroni method.

Results

MtDNA analysis

Genetic variation at the mtDNA control region

Sixty-four haplotypes (accession numbers KJ456520–

KJ456583) among the 344 samples were found for the 322 bp

fragment among all geographic regions (eastern and Western

North Atlantic) defined by 44 polymorphic sites, 26 of which

were parsimony informative. Replicate samples revealed no

errors. Amongst the eight geographic regions in the eastern

North Atlantic (see above), 55 haplotypes were found with

unique haplotypes in the Northern North Atlantic (7), Southern

North Sea (4), Denmark (1), East Scotland (3), NW British Isles

(5) and Western Ireland (15). In the Western North Atlantic, a

total of 24 haplotypes were identified, with 8 unique haplotypes

for this region (see illustration in the network tree shown in

Figure S1). Over all samples, haplotypic (gene) diversity

(h = 0.927 ± 0.007; Table 1) was high, but nucleotide diver-

sity values were relatively low (p = 0.00891 ± 0.00028).

Western North Atlantic ancient samples were excluded from

these calculations to avoid bias in the analyses given that they

belong to a population from the early 19th century.

Differentiation among populations

The initial analyses, performed by regions using FST, and

UST, showed few significant differences among the initial

eight sampling regions (Table 2). We therefore pooled areas

that were not significantly differentiated, but represented

contiguous areas separated from other similar areas by dis-

tance or natural barriers (see Figs. 1, 2). In the North Sea

northern and southern sampling groups were retained

reflecting ecological and genetic divisions seen for other

cetacean species (e.g. de Luna Lopez et al. 2012). East

Scotland (ESC) and the Shetland Isles (SHT) each showed

significant differentiation compared with a number of other

regions, but not with each other (see Table 2). The sample

size for southern England (SGL) was too small (N = 9) for

strong inference and there was no clear group with which it

should be pooled, and so it was left on its own. The northern

North Atlantic (NNA) sample was differentiated from both

the E-ENA and the North Sea samples, and therefore retained

as a separate population (Table 3; Fig. 1).

FST Comparisons based on pooled regions showed that

E-ENA samples (Fig. 1) are significantly differentiated from

NNA, W-ENA, and WNA (Table 3, Figs. 1, 2). Differenti-

ation between E-ENA and both NNA and WNA was sup-

ported by the Exact test, which also suggested some degree

of differentiation between North Sea samples and samples

from NNA and E-ENA (Table 3). No differentiation was

seen across the North Atlantic (e.g. comparing WNA against

W-ENA; Table 3). The power analysis indicated that an FST

of 0.008 or larger could have been detected with a confidence

of 95 %, given the data available. An Analysis of Molecular

Variance (AMOVA) using conventional F-Statistics from

haplotype frequencies showed that 98.98 % of the variance

could be explained as a result of the differences within

populations: FSC = 0.00335 (P = 0.023); FST = 0.01019

(P = 0.024); FCT = 0.00686 (P = 0.009).

Mismatch distribution analysis and neutrality tests

The mismatch distributions show a clear unimodal shape in

most populations that were analyzed (Fig. 3). The variance

(SSD) and the small, non-significant values of the rag-

gedness index (r) suggested that the curves did not differ

significantly from that expected under a model of sudden

expansion. The exception was the Shetland Isles, where the

raggedness index was higher than in other populations and

significant (0.135, P = 0.022), rejecting the hypothesis of

sudden expansion in this region (Table 4).

The sudden expansion in most L. acutus populations was

also corroborated by the negative and significant values of

Tajima’s D, with the exception of WNAanc (0.748,

P [ 0.8020) and Shetland Isles (0.228, P [ 0.622; Table 4)

where values were positive and not significant. Fu’s statistics

showed large negative and highly significant values in all

populations, except for the WNA anc (-1.713, P [ 0.197)

and Shetland Isles (Fs = -1.181, P [ 0.27; Table 4), sug-

gesting different demographic histories for these regions.

However, when combining samples from the Shetland Isles

and East Scotland (E-ENA), the mismatch distribution graph

was unimodal (Fig. 3), values of Raggedness index and SSD

were small and not significant (0.00578, P [ 0.13; 0.0349,

P [ 0.281 respectively), and Tajima’s D and Fu’s statistic

were negative and significant (-0.668, P [ 0.0423; -8.391,

P [ 0.00001 respectively). The expansion time in L. acutus

populations, calculated from the parameter s from the
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mismatch distributions (Table 4), ranged from *14,000 to

*9,000 years ago, using a mutation rate of 5 9 107 (Ho

et al. 2007). These estimates are consistent with a range

expansion after the LGM in the Pleistocene (19,000–14,000

YBP; Pedersen 1983).

Microsatellite data

Genetic variation and differentiation at microsatellite loci

None of the 10 loci showed genotyping errors based on

MicroChecker analysis (including sample sets restricted to

tooth samples), and replicated samples did not reveal geno-

typing errors. The genotypic independence between each

pair of loci was confirmed using the linkage disequilibrium

test. After Bonferroni correction, two loci (EV94 and D08)

showed a significant deviation from the Hardy–Weinberg

equilibrium expectation in one population (Western Ireland;

Table S2). All loci were retained because there was no

indication that these deviations biased results (no significant

deviation between Western Ireland and other putative pop-

ulations; see below). The average gene diversity over

ten loci (N = 76) was: 0.728 ± 0.387. An average of

10.10 ± 4.228 alleles were found. The average of genetic

diversity over loci for Shetland Isles was 0.722 ± 0.397, for

East Scotland 0.662 ± 0.355, for NW British Isles

0.747 ± 0.401, and for Western Ireland 0.744 ± 0.424.

The Garza & Williamson statistics ranged between

0.424 ± 0.126 and 0.472 ± 0.111. FST values showed small

but significant differentiation only between the Shetland

Isles and NW British Isles (0.0158, P = 0.047; Table 5). For

comparisons against the WNA sample for FST at 5 loci (with

or without EV94, which showed heterozygote deficiency in

WNA; Table S1) there were no significant values (ranging

from 0.010 to 0.012). Low power is clearly a potential issue,

given relatively small sample sizes and few loci.

Discussion

Genetic variability in Atlantic white-sided dolphins

A total of 344 mtDNA control region sequences were

obtained from L. acutus from the Western and Eastern

North Atlantic, and a subset of 102 samples was evaluated

with microsatellite loci. Microsatellite gene diversity

(0.728 ± 0.387) and the mtDNA haplotype diversity found

in this species (overall 0.927 ± 0.007) were similar to

values reported for other delphinids (e.g., Pichler and

Baker 2000; Cassens et al. 2003; Harlin et al. 2003; Hay-

ano et al. 2004; Natoli et al. 2006; Quérouil et al. 2007),

though comparability for microsatellite DNA depends on

the set of loci investigated. However, nucleotide diversity

was low compared to haplotype diversity, ranging from

0.0087 ± 0.0052 to 0.0119 ± 0.0069. Similar levels of

nucleotide diversity have been reported for cetacean pop-

ulations worldwide (e.g. Bérubé et al. 1998, Pichler and

Baker 2000; Parsons et al. 2002; Natoli et al. 2006).

Table 1 Genetic diversity estimates at mtDNA in L. acutus

Populations Sample size Polimorphic sites Number of haplotypes h: Haplotype diversity p: Nucleotide diversity

NNA 52 20 21 0.9186 ± 0.0195 0.0087 ± 0.0052

WNAma 29 14 14 0.8990 ± 0.0360 0.0094 ± 0.0056

WNAmn 33 20 17 0.9280 ± 0.0266 0.0092 ± 0.0055

WNA (WNAma ? WNAmn) 62 23 22 0.9159 ± 0.0199 0.0093 ± 0.0055

WNAanc 26 10 9 0.8862 ± 0.0362 0.0100 ± 0.0059

SNS 15 15 12 0.9619 ± 0.0399 0.0125 ± 0.0074

DMK 14 13 12 0.9780 ± 0.0345 0.0116 ± 0.0070

North Sea (SNS ? DMK) 29 20 19 0.9655 ± 0.0189 0.0119 ± 0.0069

ESC 31 18 17 0.9462 ± 0.0210 0.0098 ± 0.0058

SHT 20 9 8 0.8684 ± 0.0410 0.0085 ± 0.0053

E-ENA (ESC ? SHT) 51 19 19 0.9286 ± 0.0165 0.0094 ± 0.0055

NWBI 35 13 17 0.9092 ± 0.0329 0.0083 ± 0.0050

WRL 80 28 33 0.9329 ± 0.0149 0.0097 ± 0.0056

W-ENA (NWBI ? WRL) 115 31 41 0.9263 ± 0.0139 0.0092 ± 0.0054

SGL 9 9 8 0.9722 ± 0.0640 0.0089 ± 0.0059

Overall 344 44 64 0.9270 ± 0.0070a 0.00891 ± 0.0003

Populations names are as follow: NNA Northern North Atlantic (Faroe Isles plus Iceland); NWBI Northwest British Isles; WRL West Ireland; SGL

South England; WNAma Western North Atlantic, Massachussets; WNAmn Western North Atlantic, Maine; WNAanc Western North Atlantic

ancient; SNS Southern North Sea; DMK Denmark; ESC East Scotland; SHT Shetland Isles
a Over all samples, the genetic diversity and nucleotide diversity values were computed excluding samples from Western Ancient origin
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In general, a pattern of high haplotypic diversity and low

nucleotide diversity is consistent with population expan-

sion, which creates an excess of haplotypes differing by

one or a few mutations (Rogers and Harpending 1992).

Various authors have noted an association between signals

for expansion and past climatic events (e.g., Pleistocene

glaciations) that suggest bottlenecked populations in gla-

cial refugia (see Wares 2002; Hewitt 2000, 2004; Bangu-

era-Hinestroza et al. 2010). A rapid expansion from

refugial populations may have involved several bottle-

necks, with progressive loss of allelic diversity among

populations in the postglacial colonized regions (see

review in Hewitt 2000). In our study, the possibility of a

post-bottleneck population expansion was corroborated by

the Tajima’s D statistics, the Fu’s statistics, and the mis-

match distribution analyses in most populations, indicating

a likely reduction in population sizes and subsequent

expansion.

The fact that much of the diversity in the network

phylogeny (Figure S1) is derived from a few dominant

haplotypes is also consistent with an expansion signal.

Although the signal was not as strong for the Shetland

sample, it became stronger when the small, undifferenti-

ated eastern Scotland and the Shetlands population samples

were combined. The timing of expansion events based on

our analyses would be consistent with expansion from

refugia following the LGM (expansion time estimates

ranged from 9,000 to 14,000 YBP). Evidence for this was

also found for the congener L. albirostris in the North

Atlantic (Banguera-Hinestroza et al. 2010). Signatures for

population bottlenecks were also found for the sample sets

analysed for microsatellite DNA loci, with M-ratio values

ranging from 0.42 to 0.46 (compared to the proposed cutoff

of below 0.67 for a bottleneck signal; Garza and Wil-

liamson 2001).

Population structure

Western North Atlantic versus Eastern North Atlantic

No differentiation was found (within the power limits of

our analysis) between the Westernmost part of the Eastern

North Atlantic and the Western North Atlantic: W-ENA

versus WNA. These results agree with aspects of the results

reported by Mikkelsen and Lund (1994) who found no

craniometrical differences among samples on either side of

the North Atlantic. The absence of differentiation between

these regions could be explained by the large dispersal

capabilities of L. acutus suggested by the observation of

large aggregations of individuals in the mid-Atlantic (e.g.

Selzer and Payne 1988). This could prevent differentiation

due to ongoing gene flow across populations, as has been

suggested in other marine organisms with high dispersalT
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capacities (Bremer et al. 2005; Ely et al. 2005, White et al.

2010).

In contrast to the absence of differentiation among open

Atlantic samples, some degree of differentiation was found

between Atlantic populations (WNA, W-ENA and NNA)

and putative populations in the easternmost part of the

North Atlantic (Shetland Isles and North Sea) (see

Tables 2, 3, 4, 5). Differentiation between E-ENA versus

NNA and E-ENA versus WNA was supported based on

mtDNA data by FST and the exact test; whereas differen-

tiation between E-ENA and W-ENA was only supported by

FST. Differentiation between the North Sea (Denmark plus

Southern North Sea) versus NNA and North Sea vetsus

E-ENA was only supported by the exact test. When ana-

lyzing individual regions, both UST and FST showed evi-

dence of differentiation between Shetland and NNA (see

Table 2); UST also showed differentiation between Shet-

land and NW British isles, but this differentiation was not

supported by FST. It was supported by the comparison of

these sites based on 10 microsatellite DNA loci, although

sample sizes were small (Table 5). There was no indication

that the ancient WNA sample was differentiated from other

WNS samples, suggesting spatial and temporal continuity,

given our level of resolution.

On balance it was apparent that there was some level of

differentiation between dolphins sampled east and north of

Scotland and samples collected further west, which had

also been seen for bottlenose dolphin populations in this

region (Tursiops truncatus; Parsons et al. 2002; Nichols

et al. 2007). However, this is unexpected for L. acutus due

to the fact that they mostly inhabit the shelf edge entering

the northern and central North Sea mainly in late summer

(July–September, see Evans et al. 2003). Although sight-

ings data do not suggest a resident population in the North

Sea, their seasonal presence could indicate a coherent

migratory stock, which would still be consistent with the

genetic data. More information on distribution, abundance

and movement patterns will be needed to help resolve this

question.

One possible explanation for differentiation between a

population in the North Sea and the rest of the North

Atlantic could be the differential effect of glaciated epochs

in different regions. For example, it has been suggested that

during the LGM the ice sheet covered much of the North

Sea, with the exception of the southern regions (see Fig. 1,

in Siegert and Dowdeswell 2004), which could have been

the only available habitat for dolphin species in the eastern

North Atlantic and resulted in a refugial population sepa-

rate from populations further west.

Conclusions

The balance of evidence indicates that there is an associ-

ation between reduced variation and extinction risk

(Frankham 2005). However, after strong bottleneck events,

the survival of populations may depend on non-genetic

factors and their capacity to promote recovery in a post-

bottleneck phase (e.g. Weber et al. 2000). Following pop-

ulation reductions in the past (likely during glacial epochs,

as suggested previously for the congener L. albirostris and

other cetacean species in the North Atlantic; see Banguera-

Hinestroza et al. 2010 and references therein), L. acutus

evidently recovered quickly. The data suggest connectivity

across the North Atlantic, although this may reflect a

shared refugial population and little time for differentiation

post expansion. At the same time, there is differentiation

between the northeast and the rest of the Atlantic. Although

the sample sets differed, data for L. albirostris also sug-

gested a post-glacial expansion and isolation of a popula-

tion in the northeastern Atlantic (in this case, a sample off

Norway was isolated from samples from the UK and the

Netherlands; Banguera-Hinestroza et al. 2010). Similar

signals for expansion in the North Atlantic (Tolley et al.

Table 3 FST values (below diagonal) and Non-differentiation exact P values (above diagonal) for grouped population comparisons at mtDNA

NNA W-ENA WNA WNAanc E-ENA North Sea

N 52 115 62 26 51 29

NNA 0.744 ± 0.027 0.197 ± 0.021 0.188 ± 0.013 0.012 – 0.003 0.044 – 0.005

W-ENA -0.0032 0.301 ± 0.023 0.487 ± 0.013 0.281 ± 0.019 0.153 ± 0.013

WNA -0.0001 0.0022 0.416 ± 0.009 0.002 – 0.001 0.177 ± 0.012

WNAanc 0.0102 0.0156 0.0068 0.0002 – 0.0002 0.188 ± 0.009

E-ENA 0.0155

(0.033)

0.0103

(0.043)

0.0191

(0.012)

0.0473

(0.001)

0.043 – 0.004

North Sea 0.0105 0.0102 0.0014 0.0110 0.0111

FST values were calculated using 10,000 permutations and non-differentiation exact P values were performed using 100,000 markov steps.

Values in bold are significant at level 0.05 after Bonferroni correction. Populations: NNA Northern North Atlantic; W-ENA NW British isles plus

Western Ireland; SGL South England; WNA Western North Atlantic; WNAanc Western North Atlantic ancient; E-ENA Shetland isles plus East

Scotland; North Sea Southern North Sea plus Denmark
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Fig. 3 Mismatch distributions in putative populations as labelled (c.f. Figs. 1, 2)

Conserv Genet

123



2001) and structuring in the eastern North Atlantic (de

Luna Lopez et al. 2012) have been described for the harbor

porpoise (Phocoena phocoena).

The implications for conservation are that populations of

L. acutus have reduced mtDNA nucleotide diversity

throughout its distribution range (likely due to historical

demographic events), suggesting possible vulnerability to

exploitation (e.g. in bycatch, direct takes and habitat deg-

radation). Further, the northeastern region of the North

Atlantic merits separate management, given evidence for

isolation of the regional population there (possibly due to a

separate refugia being located in that part of the ocean

during the LGM) and ongoing impact from the drive

fishery in the Faroes (see Introduction). Importantly, this is

another cetacean species showing a similar pattern, sug-

gesting the potential for transferable inference about con-

servation needs for small cetaceans in these regions, and at

least the need to consider these factors with further

research in the future.
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Table 5 Fst values for microsatellite loci between ENA regional

samples

Shetland Islands

(SHT) (N = 14)

East

Scotland

(ESC)

NW British

Isles (NWBI)

East Scotland

(N = 20)

0.0068

NW British

Isles

(N = 17)

0.0158 (0.047) 0.0054

Western

Ireland

(N = 25)

0.0097 0.0069 0.0091

Values were computed using 10 microsatellites loci and 1,000 per-

mutations, values in bold were significant at 0.05 level after Bon-

ferroni correction
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